Short-lived brominated hydrocarbons – observations in the source regions and the tropical tropopause layer
نویسندگان
چکیده
We conducted measurements of the five important short-lived organic bromine species in the marine boundary layer (MBL). Measurements were made in the Northern Hemisphere mid-latitudes (Sylt Island, North Sea) in June 2009 and in the tropical Western Pacific during the TransBrom ship campaign in October 2009. For the one-week time series on Sylt Island, mean mixing ratios of CHBr3, CH2Br2, CHBr2Cl and CH2BrCl were 2.0, 1.1, 0.2, 0.1 ppt, respectively. We found maxima of 5.8 and 1.6 ppt for the two main components CHBr3 and CH2Br2. Along the cruise track in the Western Pacific (between 41 N and 13 S) we measured mean mixing ratios of 0.9, 0.9, 0.2, 0.1 and 0.1 ppt for CHBr3, CH2Br2, CHBrCl2, CHBr2Cl and CH2BrCl. Air samples with coastal influence showed considerably higher mixing ratios than the samples with open ocean origin. Correlation analyses of the two data sets yielded strong linear relationships between the mixing ratios of four of the five species (except for CH2BrCl). Using a combined data set from the two campaigns and a comparison with the results from two former studies, rough estimates of the molar emission ratios between the correlated substances were: 9/1/0.35/0.35 for CHBr3/CH2Br2/CHBrCl2/CHBr2Cl. Additional measurements were made in the tropical tropopause layer (TTL) above Teresina (Brazil, 5 S) in June 2008, using balloon-borne cryogenic whole air sampling technique. Near the level of zero clear-sky net radiative heating (LZRH) at 14.8 km about 2.25 ppt organic bromine was bound to the five short-lived species, making up 13 % of total organic bromine (17.82 ppt). CH2Br2 (1.45 ppt) and CHBr3 (0.56 ppt) accounted for 90 % of the budget of short-lived compounds in that region. Near the tropopause (at 17.5 km) organic bromine from these substances was reduced to 1.35 ppt, with 1.07 and 0.12 ppt attributed to CH2Br2 and CHBr3, respectively.
منابع مشابه
Correction for Navarro et al., Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.
Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the...
متن کاملProcesses regulating short-lived species in the tropical tropopause layer
[1] A one-dimensional model of vertical transport in the tropical tropopause layer (TTL) is developed. The model uses vertical advection, a convective source, and a chemical sink to simulate the profiles of very short lived substances in the TTL. The model simulates evanescent profiles of short-lived hydrocarbon species observed by satellite and is also used to simulate short-lived bromine spec...
متن کاملContribution of VSLS to stratospheric chlorine and bromine
The total stratospheric organic chlorine and bromine burden was derived from balloon-borne measurements in the tropics (Teresina, Brazil, 5 • 04 ′ S, 42 • 52 ′ W) in 2005. Whole air samples were collected cryogenically at altitudes between 15 and 34 km. For the first time, we report measurements of a set of 28 chlorinated and brominated sub-5 stances in the tropical upper troposphere and strato...
متن کاملEmission and transport of bromocarbons: from the West Pacific ocean into the stratosphere
Oceanic emissions of halogenated very short-lived substances (VSLS) are expected to contribute significantly to the stratospheric halogen loading and therefore to ozone depletion. The amount of VSLS transported into the stratosphere is estimated based on in-situ observations around the tropical tropopause layer (TTL) and on modeling studies which mostly use prescribed global emission scenarios ...
متن کاملClimatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach
The Asian Summer Monsoon (ASM) region has been recognized as a key region that plays a vital role in troposphere-to-stratosphere transport (TST), which can significant impact the budget of global atmospheric constituents and climate change. However, the details of transport from the boundary layer (BL) to tropopause layer (TL) over these regions, particularly from a climatological perspective, ...
متن کامل